Search
Research
Identifying individual, household and environmental risk factors for malaria infection on Bioko Island to inform interventionsSince 2004, malaria transmission on Bioko Island has declined significantly as a result of the scaling-up of control interventions. The aim of eliminating malaria from the Island remains elusive, however, underscoring the need to adapt control to the local context. Understanding the factors driving the risk of malaria infection is critical to inform optimal suits of interventions in this adaptive approach.
Research
Characterizing human movement patterns using GPS data loggers in an area of persistent malaria in Zimbabwe along the Mozambique borderHuman mobility is a driver for the reemergence or resurgence of malaria and has been identified as a source of cross-border transmission. However, movement patterns are difficult to measure in rural areas where malaria risk is high. In countries with malaria elimination goals, it is essential to determine the role of mobility on malaria transmission to implement appropriate interventions.
Research
Piperaquine Pharmacokinetic and Pharmacodynamic Profiles in Healthy Volunteers of Papua New Guinea after Administration of Three-Monthly Doses of Dihydroartemisinin-PiperaquineMass drug administration (MDA) with monthly dihydroartemisinin-piperaquine (DHA-PQP) appears useful in malaria control and elimination strategies. Determining the relationship between consecutive piperaquine phosphate (PQP) exposure and its impact on QT interval prolongation is a key safety consideration for MDA campaigns.
Research
Less is more: repellent-treated fabric strips as a substitute for full screening of open eave gaps for indoor and outdoor protection from malaria mosquito bitesProviding protection from malaria vector bites, both indoors and outdoors, is crucial to curbing malaria parasite transmission. Screening of house entry points, especially with incorporated insecticides, confers significant protection but remains a costly and labour-intensive application. Use of spatial repellents has shown promise in creating areas of protection in peri-domestic areas.
Research
The Centres for Disease Control light trap and the human decoy trap compared to the human landing catch for measuring Anopheles biting in rural TanzaniaVector mosquito biting intensity is an important measure to understand malaria transmission. Human landing catch (HLC) is an effective but labour-intensive, expensive, and potentially hazardous entomological surveillance tool. The Centres for Disease Control light trap (CDC-LT) and the human decoy trap (HDT) are exposure-free alternatives.
Research
A novel statistical framework for exploring the population dynamics and seasonality of mosquito populationsUnderstanding the temporal dynamics of mosquito populations underlying vector-borne disease transmission is key to optimizing control strategies. Many questions remain surrounding the drivers of these dynamics and how they vary between species-questions rarely answerable from individual entomological studies (that typically focus on a single location or species).
Research
Viral haemorrhagic fevers and malaria co-infections among febrile patients seeking health care in TanzaniaIn recent years there have been reports of viral haemorrhagic fever (VHF) epidemics in sub-Saharan Africa where malaria is endemic. VHF and malaria have overlapping clinical presentations making differential diagnosis a challenge.
Research
The ecological determinants of severe dengue: A Bayesian inferential modelLow socioeconomic status (SES), high temperature, and increasing rainfall patterns are associated with increased dengue case counts. However, the effect of climatic variables on individual dengue virus (DENV) serotypes and the extent to which serotype count affects the rate of severe dengue in Mexico have not been studied before.
Research
Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum and Plasmodium vivax malaria, 2000-22: a spatial and temporal modelling studyMalaria remains a leading cause of illness and death globally, with countries in sub-Saharan Africa bearing a disproportionate burden. Global high-resolution maps of malaria prevalence, incidence, and mortality are crucial for tracking spatially heterogeneous progress against the disease and to inform strategic malaria control efforts. We present the latest such maps, the first since 2019, which cover the years 2000–22. The maps are accompanied by administrative-level summaries and include estimated COVID-19 pandemic-related impacts on malaria burden.