Skip to content
The Kids Research Institute Australia logo
Donate

Search

Research

Time-course RNAseq data of murine AB1 mesothelioma and Renca renal cancer following immune checkpoint therapy

Time-critical transcriptional events in the immune microenvironment are important for response to immune checkpoint blockade (ICB), yet these events are difficult to characterise and remain incompletely understood. Here, we present whole tumor RNA sequencing data in the context of treatment with ICB in murine models of AB1 mesothelioma and Renca renal cell cancer. 

Research

Use of privacy-preserving record linkage to examine the dispensing of pharmaceutical benefits scheme medicines to pregnant women in Western Australia

Medications are commonly used during pregnancy to manage pre-existing conditions and conditions that arise during pregnancy. However, not all medications are safe to use in pregnancy. This study utilized privacy-preserving record linkage (PPRL) to examine medications dispensed under the national Pharmaceutical Benefits Scheme (PBS) to pregnant women in Western Australia (WA) overall and by medication safety category. 

Research

Preclinical efficacy of azacitidine and venetoclax for infant KMT2A-rearranged acute lymphoblastic leukemia reveals a new therapeutic strategy

Infants with KMT2A-rearranged B-cell acute lymphoblastic leukemia (ALL) have a dismal prognosis. Survival outcomes have remained static in recent decades despite treatment intensification and novel therapies are urgently required.

Research

Rare disease education in Europe and beyond: time to act

People living with rare diseases (PLWRD) still face huge unmet needs, in part due to the fact that care systems are not sufficiently aligned with their needs and healthcare workforce (HWF) along their care pathways lacks competencies to efficiently tackle rare disease-specific challenges. Level of rare disease knowledge and awareness among the current and future HWF is insufficient.

Research

3D Face Reconstruction with Mobile Phone Cameras for Rare Disease Diagnosis

Computer vision technology is advancing rare disease diagnosis to address unmet needs of the more than 300 million individuals affected globally; one in three rare diseases have a known facial phenotype. 3D face model reconstruction is a key driver of these advances.

Research

Pushing the boundaries of rare disease diagnostics with the help of the first Undiagnosed Hackathon

Timo Lassmann BSc (Hons) MSc PhD Feilman Fellow; Head, Precision Health Research and Head, Translational Intelligence timo.lassmann@thekids.org.au

Research

Remission of peanut allergy is associated with rewiring of allergen-driven T helper 2-related gene networks

The immunological changes underpinning acquisition of remission (also called sustained unresponsiveness) following food immunotherapy remain poorly defined. Limited access to effective therapies and biosamples from treatment responders has prevented progress. Probiotic peanut oral immunotherapy is highly effective at inducing remission, providing an opportunity to investigate immune changes.

Research

Medical Comorbidities in MECP2 Duplication Syndrome: Results from the International MECP2 Duplication Database

Since the discovery of MECP2 duplication syndrome (MDS) in 1999, efforts to characterise this disorder have been limited by a lack of large datasets, with small case series often favouring the reporting of certain conditions over others. This study is the largest to date, featuring 134 males and 20 females, ascertained from the international MECP2 Duplication Database (MDBase).

Research

CRISPR single base editing, neuronal disease modelling and functional genomics for genetic variant analysis: pipeline validation using Kleefstra syndrome EHMT1 haploinsufficiency

Over 400 million people worldwide are living with a rare disease. Next Generation Sequencing identifies potential disease causative genetic variants. However, many are identified as variants of uncertain significance and require functional laboratory validation to determine pathogenicity, and this creates major diagnostic delays.

Research

Functional validation of variants of unknown significance using CRISPR gene editing and transcriptomics: A Kleefstra syndrome case study

There are an estimated > 400 million people living with a rare disease globally, with genetic variants the cause of approximately 80% of cases. Next Generation Sequencing (NGS) rapidly identifies genetic variants however they are often of unknown significance.