Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Macrophage PD-1 associates with neutrophilia and reduced bacterial killing in early cystic fibrosis airway disease

Macrophages are the major resident immune cells in human airways coordinating responses to infection and injury. In cystic fibrosis, neutrophils are recruited to the airways shortly after birth, and actively exocytose damaging enzymes prior to chronic infection, suggesting a potential defect in macrophage immunomodulatory function.

Research

Personal network inference unveils heterogeneous immune response patterns to viral infection in children with acute wheezing

Human rhinovirus (RV)-induced exacerbations of asthma and wheeze are a major cause of emergency room presentations and hospital admissions among children. Previous studies have shown that immune response patterns during these exacerbations are heterogeneous and are characterized by the presence or absence of robust interferon responses.

Research

Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches

Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation

Research

Productive infection of human embryonic stem cell-derived nkx2.1+ respiratory progenitors with human rhinovirus.

Our experiments provide proof of principle for the use of PSC-derived respiratory epithelial cells in the study of cell-virus interactions.

Research

Early pulmonary inflammation and lung damage in children with cystic fibrosis

Airway inflammation and infection are present from early in life, often before children are symptomatic.

Research

Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity

In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset.

Research

Effect of human rhinovirus infection on airway epithelium tight junction protein disassembly and transepithelial permeability

HRV-1B infection directly alters human airway epithelial TJ expression leading to increased epithelial permeability potentially via antiviral response of IL-15

Research

The genetic and epigenetic landscapes of the epithelium in asthma

Genetic factors in airway epithelial cells that are functionally associated with asthma pathogenesis

Research

Accumulation mode particles and LPS exposure induce TLR-4 dependent and independent inflammatory responses in the lung

We aimed to delineate the effects of LPS and AMP on airway inflammation, and potential contribution to airway disease by measuring airway inflammatory responses

Research

Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics

Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes.